

Date Planned ://	Daily Tutorial Sheet-9	Expected Duration : 90 Min
Actual Date of Attempt ://	Level-2	Exact Duration :

106. If a homogeneous catalytic reaction follows three alternative paths A, B and C, then which of the following indicates the relative ease with which the reaction moves?

- A > B > C(A)
- **(B)** C > B > A
- A > C > B(C)
- (D) A = B = C
- 107. Two different first order reactions have rate constants k_1 and k_2 at $T_1(k_1 > k_2)$. If temperature is increased from T_1 to T_2 , then new constants becomes k_3 and k_4 respectively. Which among the following relations is correct?

(A) $k_1 > k_2 = k_3 = k_4$ $k_1 < k_3$ and $k_2 < k_4$

 $\mathbf{k}_1 = \mathbf{k}_3 = \mathbf{k}_4$ (C)

- **(D)** $k_1 > k_2 > k_3 > k_4$
- 108. Consider the following statements:
 - The rate of reaction is always proportional to the concentrations of reactants.
 - The order of an elementary chemical reaction step can be determined by examining its 2. stoichiometry.
 - 3. The first order reactions follow an exponential time course.

Of these statements:

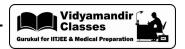
- (A) 1, 2 and 3 are correct
- **(B)** 1 and 2 are correct

(C) 2 and 3 are correct

- (D) 1 and 3 are correct
- In the reaction, $A + B \longrightarrow C + D$, the rate when plotted against time 't' gives a straight line 109.

parallel to time axis. The order and rate of reaction will be;

(A) 1, k + 1


(B) 0, k

(C) (1 = k), 1

- **(D)** k, k + 1
- 110. Initial concentration of reactant for nth order reaction is 'a'. Which of the following relations is correct **()** about $t_{1/2}$ of the reaction?
 - $\ln t_{1/2} = \ln (constant) (n 1) \log_e a$ (A)
- $\ln t_{1/2} = \ln n + \ln(\text{constant}) \ln a$
- (C) $t_{1/2} = \ln n = \ln(\text{constant}) + \ln a_0$
- (D) $\ln t_{1/2} = n \ln a_0$
- According to collision theory, which of the following is the criteria for an effective collision? 111.
 - Activation energy
 - Proper orientation II.
 - (A) Only I

(B) Only II

(C) both I and II **(D)** none of these

- For the first order reaction $(C = C_0 e^{-k_1 t})$ and $T_{avg} = k_1^{-1}$. After two average lives, concentration of the 112. reactant is reduced to:
 - (A) 25%
- **(B)** 75%
- (C) $\frac{100}{e}\%$ (D) $\frac{100}{e^2}\%$
- A reactant (A) forms two products under identical condition. 113.
 - 1. $A \xrightarrow{k_1} B$ Activation energy E_{a_1}
 - 2. $A \xrightarrow{k_2} C$ Activation energy E_{a_1}

If $E_{a_2} = 2E_{a_1}$, then which of the following is correct?

- (A) Reaction 2 is slow compared to reaction 1
- **(B)** Reaction 2 is more exothermic than reaction 1
- (C) Reaction 2 is more endothermic than reaction 1
- (D) Reaction 2 is fast compared to reaction 1
- For the reaction, $2H_2(g) + 2NO(g) \longrightarrow N_2(g) + 2H_2O(g)$. Rate law is, rate $= k[NO]^2[H_2]$. Mechanism is 114. given by:

Step 1: $2NO \longrightarrow N_2O_2$

 $\textbf{Step 2:} \quad N_2O_2 + H_2 \longrightarrow N_2O + H_2O$

Step 3: $N_2O + H_2 \longrightarrow N_2 + H_2O$

Rate law is true if:

- Step 1 is the slow step (A)
- **(B)** Step 2 is the slow step
- (C) Step 3 is the slow step
- (D) Step 1 and 2 are slow steps
- 115. Which of the following is correct?

 \odot

- (A) Molecularity of a reaction can be fractional
- **(B)** Zero order reaction never stops
- (C) A first order reaction must be homogenous
- **(D)** The frequency of a Arrhenius type equation increases with increase in temperature